Week 1: Introduction to Data Science
• Module 1: Overview of Data Science
◦ What is Data Science?
◦ Importance and Applications
◦ Data Science Lifecycle
• Module 2: Tools and Technologies
◦ Introduction to Python/R
◦ Jupyter Notebooks
◦ Basic Libraries (NumPy, Pandas)
Week 2: Data Collection and Cleaning
• Module 3: Data Collection
◦ Types of Data (Structured vs. Unstructured)
◦ Data Sources (APIs, Web Scraping, Databases)
• Module 4: Data Cleaning
◦ Handling Missing Values
◦ Data Transformation
◦ Data Normalization
Week 3: Data Analysis and Visualization
• Module 5: Exploratory Data Analysis (EDA)
◦ Descriptive Statistics
◦ Data Visualization Techniques (Matplotlib, Seaborn)
• Module 6: Data Visualization Tools
◦ Creating Visualizations
◦ Interpreting Visual Data
Week 4: Introduction to Machine Learning
• Module 7: Basics of Machine Learning
◦ Supervised vs. Unsupervised Learning
◦ Key Algorithms (Linear Regression, K-Means Clustering)
• Module 8: Practical Applications
◦ Building a Simple Model
◦ Model Evaluation and Validation